In-vehicle Optimization of 2-stage Turbocharging for Gasoline Engines
نویسندگان
چکیده
منابع مشابه
Turbocharging: Key technology for high-performance engines
Turbocharger development and production at MTU Turbocharging is an integral component of the engine design concept. It shapes the characteristics of the engine more than almost any other system, as it affects its economy, dynamics and emission characteristics. This is why turbocharging is one of MTU’s key technologies. MTU has a tradition of maintaining the expertise for developing and producin...
متن کاملdevelopment and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولSteady-state modeling of a turbocharger in gasoline engines
The gas flow estimation is crucial for the proper operation and monitoring of turbocharged (TC) engines with a torque structured engine control unit (ECU). This paper presents mean value models developed for modeling gas flow over the compressor, the turbine and the wastegate (WG) in a TC gasoline engine not equipped with a hot film air-mass flow meter (HFM). The turbine flow ...
متن کاملCFD Aided Development of Gasoline Engines
Due to recent improvements on combustion modeling, three-dimensional Computational Fluid Dynamics (CFD) tools have become essential in aiding in the engine development. They allow the understanding of basic combustion phenomena and help to optimize various parameters of a pre-existing combustion system or to design a combustion chamber from scratch. Combustion systems become more and more compl...
متن کاملprediction of ignition delay period in d.i diesel engines
a semi-empirical mathematical model for predicting physical part of ignition delay period in the combustion of direct - injection diesel engines with swirl is developed . this model based on a single droplet evaporation model . the governing equations , namely , equations of droplet motion , heat and mass transfer were solved simultaneously using a rung-kutta step by step unmerical method . the...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Automotive Engineering
سال: 2011
ISSN: 2185-0984,2185-0992
DOI: 10.20485/jsaeijae.2.4_143